miércoles, 15 de octubre de 2014

MATERIA



Materia es todo aquello que tiene localización espacial, posee una cierta cantidad de energía, y está sujeto a cambios en el tiempo y a interacciones con aparatos de medida. En física yfilosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc.
Nivel microscópico
El nivel microscópico de la materia másica puede entenderse como un agregado de moléculas. Éstas a su vez son agrupaciones de átomos que forman parte del nivel microscópico. A su vez existen niveles microscópicos que permiten descomponer los átomos en constituyentes aún más elementales, que sería el siguiente nivel son:
·         Electrones: partículas leptónicas con carga eléctrica negativa.
·         Protones: partículas bariónicas con carga eléctrica positiva.
·         Neutrones: partículas bariónicas sin carga eléctrica (pero con momento magnético).
A partir de aquí hay todo un conjunto de partículas subatómicas que acaban finalmente en los constituyentes últimos de la materia. Así por ejemplo virtualmente los bariones del núcleo (protones y neutrones) se mantienen unidos gracias a un campo escalar formado por piones(bosones de espín cero). E igualmente los protones y neutrones, sabemos que no son partículas elementales, sino que tienen constituyentes de menor nivel que llamamos quarks(que a su vez se mantienen unidos mediante el intercambio de gluones virtuales).
Nivel macroscópico
Macroscópicamente, la materia másica se presenta en las condiciones imperantes en el sistema solar, en uno de cuatro estados de agregación molecular: sólido, líquido, gaseoso y plasma. De acuerdo con la teoría cinética molecular la materia se encuentra formada pormoléculas y éstas se encuentran animadas de movimiento, el cual cambia constantemente de dirección y velocidad cuando chocan o bajo el influjo de otras interacciones físicas. Debido a este movimiento presentan energía cinética que tiende a separarlas, pero también tienen unaenergía potencial que tiende a juntarlas. Por lo tanto el estado físico de una sustancia puede ser:
·         Sólido: si la energía cinética es menor que la potencial.
·         Líquido: si la energía cinética y potencial son aproximadamente iguales.
·         Gaseoso: si la energía cinética es mayor que la potencial.
·         Plasma: si la energía cinética es tal que los electrones tienen una energía total positiva.
Bajo ciertas condiciones puede encontrarse materia másica en otros estados físicos, como elcondensado de Bose-Einstein o el condensado fermiónico.
La manera más adecuada de definir materia másica es describiendo sus cualidades:
·         Presenta dimensiones, es decir, ocupa un lugar en un espacio-tiempo determinado.
·         Presenta inercia: la inercia se define como la resistencia que opone la materia a modificar su estado de reposo o movimiento.
·         La materia es la causa de la gravedad o gravitación, que consiste en la atracción que actúa siempre entre objetos materiales aunque estén separados por grandes distancias.

Propiedades de la materia ordinaria

Propiedades generales

Las presentan los cuerpos sin distinción y por tal motivo no permiten diferenciar una sustancia de otra. Algunas de las propiedades generales se les da el nombre de extensivas, pues su valor depende de la cantidad de materia, tales el caso de la masa, peso, volumen, la inercia, la energía, impenetrabilidad, porosidad, divisibilidad, elasticidad, maleabilidad, tenacidad y dureza entre otras.

Propiedades características

Permiten distinguir una sustancia de otra. También reciben el nombre de propiedades intensivas porque su valor es independiente de la cantidad de materia. Las propiedades características se clasifican en:

Físicas

Es el caso de la densidad, el punto de fusión, el punto de ebullición, el coeficiente de solubilidad, el índice de refracción, el módulo de Young y las propiedades organolépticas.

Químicas

Están constituidas por el comportamiento de las sustancias al combinarse con otras, y los cambios con su estructura íntima como consecuencia de los efectos de diferentes clases de energía.
Ejemplos:
·         corrosividad de ácidos
·         poder calorífico
·         acidez
·         reactividad

Ley de la conservación de la materia

Como hecho científico la idea de que la masa se conserva se remonta al químico Lavoisier, el científico francés considerado padre de la Química moderna que midió cuidadosamente la masa de las sustancias antes y después de intervenir en una reacción química, y llegó a la conclusión de que la materia, medida por la masa, no se crea ni destruye, sino que sólo se transforma en el curso de las reacciones. Sus conclusiones se resumen en el siguiente enunciado: En una reacción química, la materia no se crea ni se destruye, solo se transforma.El mismo principio fue descubierto antes por Mijaíl Lomonosov, de manera que es a veces citado como ley de Lomonosov-Lavoisier, más o menos en los siguientes términos: La masa de un sistema de sustancias es constante, con independencia de los procesos internos que puedan afectarle, es decir, "La suma de los productos, es igual a la suma de los reactivos, manteniéndose constante la masa". Sin embargo, tanto las técnicas modernas como el mejoramiento de la precisión de las medidas han permitido establecer que la ley de Lomonosov-Lavoisier, se cumple sólo aproximadamente.
La equivalencia entre masa y energía descubierta por Einstein obliga a rechazar la afirmación de que la masa convencional se conserva, porque masa y energía son mutuamente convertibles. De esta manera se puede afirmar que la masa relativista equivalente (el total de masa material y energía) se conserva, pero la masa en reposo puede cambiar, como ocurre en aquellos procesos relativísticos en que una parte de la materia se convierte en fotones. La conversión en reacciones nucleares de una parte de la materia en energía radiante, con disminución de la masa en reposo; se observa por ejemplo en procesos de fisión como la explosión de una bomba atómica, o en procesos de fusión como la emisión constante de energía que realizan las estrellas.

Miscelánea

·         El kilogramo es una unidad de la cantidad de materia, corresponde a la masa de un dm³ (1 litro) de agua pura a 4 °C de temperatura. A partir de esta medida, se creó un bloque de platino e iridio de la misma masa que se denominó kilogramo patrón. Éste se conserva en la Oficina Internacional de Pesos y Medidas de Sèvres (Francia).
·         La cantidad de materia también puede ser estimada por la energía contenida en una cierta región del espacio, tal como sugiere la fórmula E = m.c² que da la equivalencia entre masa y energía establecida por la teoría de la relatividad de Albert Einstein.
·         "Tabla de densidades" en [kg/m3]: Osmio 22300, Oro 19300 - Hierro 7960 - Cemento 3000 - Agua 1000 - Hielo 920 - Madera 600 a 900 - Aire 1,29.
·         La temperatura es una magnitud que indica el grado de agitación térmica de una sustancia. Asimismo, cuando dos sustancias que están en contacto tienen distintas temperaturas se produce una transferencia de energía térmica (en forma de calor) hasta igualar ambas temperaturas. En el momento en que se igualan las temperaturas se dice que estas dos sustancias están en equilibrio térmico.
·         Los tres elementos químicos más abundantes en el universo son H, He y C; algunas de sus propiedades más importantes son:
·         Hidrógeno (H2): Densidad = 0,0899 kg/m³ Teb = -252,9 °C, Tf =-259,1 °C.
·         Helio (He): Densidad = 0,179 kg/m³ Teb = -268,9 °C, Tf = -272,2 °C.
·         Carbono (C): Densidad = 2267 kg/m³ Teb = 4027 °C, Tf = 3527 °C.

No hay comentarios.:

Publicar un comentario